Главная
Главная
О журнале
О журнале
Архив
Архив
Авторы
Авторы
Контакты
Контакты
Поиск
Поиск
Обращение к читателям
Обращение главного редактора к читателям журнала Relga.
№05
(407)
21.07.2023
Естествознание
Человеческая мысль под взглядом математика. Часть I
(№18 [163] 25.12.2007)
Автор: Александр Титов
Александр Титов

Есть многое на свете, друг Горацио,
Что и не снилось нашим мудрецам.
В. Шекспир


В колледже, где среди студентов многие интересовались словесностью,
мне пришлось руководить методологическим семинаром, на котором и возникла идея
издательства. Известный московский поэт и философ Александр Балтин пишет:
"Александр, в нашей с вами философской переписке, которую Вы опубликовали на сайте (http://e-vi.org/PHYL/PHYL.HTM), есть такое место:
все человеческие "мысли" слабы в принципе, и это доказывается математически.
А как это возможно доказать, Александр?
Что, математика располагает четкими определениями слабости и силы?
Не то, что за человеческие мысли обидно, а просто интересны пределы (или беспредельность) математики. Если найдете время – напишите, это любопытно".
Этот цикл рассказов как раз про это, и он посвящается Александру Балтину.



Рассказ первый. Задача Пифагора


- Скажи мне, знаменитый Пифагор, сколько учеников посещают твою школу и слушают твои беседы.
- Вот сколько, - ответил Пифагор, - половина изучает математику, четверть - природу, седьмая часть проводит время в размышлении, и, кроме того, есть еще три женщины.

В учебнике задача там, где уравнения.
Ну, тогда и составляем уравнение:

X/2 + X/4 + X/7 + 3 = X

Приводим к общему знаменателю (с ужасными, подозрительными дробями вроде 11/28), получаем
в ответе X=28. С ответом совпадает. Подставляем в уравнение - да, совпадает. Но что-то, что-то здесь не так...

Формулировка задачи забавна, литературна. Математика важнее всех, природа - вполовину меньше, проводить время в размышлении - сомнительное занятие, во всяком случае, не изучение, а женщины вообще "кроме того".

А если кто изучает и математику, и природу? Возможно, кто-то из изучающих проводит время в размышлениях. Да это совсем не та задача! Уравнение не годится. К тому же Пифагор не применял уравнений и не приводил дроби к общему знаменателю. Ничего этого тогда не было.     И что теперь делать? Эти X/2, X/4 и X/7 могут совмещаться, да еще 3 женщины могут входить то ли в X/2, то ли 2 в природу, одна в размышления, или еще как.
Впрочем, нет - в условии сказано "кроме того".

А все-таки, женщины - ученики, или они "кроме" учеников?
Допустим, у Пифагора женщины не ученики. Тогда про
учеников известно только то, что половина учит математику, четверть... и т.д. Но тогда годится любое число, которое делится на 2, на 4 и на 7. Таких чисел сколько угодно. Например, учеников может быть 2x4x7=56, а также 560,5600... И во всех случаях три женщины кроме того. Вряд ли Пифагор ставил такую дурную задачу
(математики называют такие задачи "тривиальными"). Значит, 3 входит в искомое число X, а остальное - совмещенные полностью или частично половина, четверть и X/7.

И кто сказал, что у задачи одно решение? Может быть, если по-разному распределять учеников по предметам, подойдет несколько чисел? Совсем непонятно, как решать.

Рассмотренный тривиальный случай дает подсказку. Рассмотрим те самые большие числа: 56,5600... Если вычесть указанные доли,остается больше 3 учеников, которые "кроме" (X/2+X/4+X/7).
Попробуем почувствовать (но не доказать), что большие числа не подходят. Ведь математики, натуралисты и размышляющие в сумме образуют некоторую ДОЛЮ общего числа учеников; тогда те, что кроме, тоже образуют какую-то ДОЛЮ. А при увеличении общего числа все доли растут, женская тоже, и именно поэтому при больших числах остается больше 3 женщин.

Теперь видно, как решать задачу. Проверим число, которое заведомо делится на 2,4,7 - это 2x4x7=56. Оно не подходит - 56 - (56/2 + 56/4 +56/7) = 56 - (28+14+8) = 56 -50 =6 (остается не 3, а 6 женщин). Много. Числа больше 56, по вышенедоказанным соображениям, пробовать не стоит - не подойдут. Пробуем числа, меньшие, чем 56, но такие, чтобы делились на 2,4 и 7. Есть такое число: 28. Пробуем - подходит. А меньше, чем 28, таких чисел нет (то есть таких, что делятся на 2,4,7). Если бы оказались, пришлось бы пробовать и их, накладывая по-разному доли.

Итак, задача решается не уравнением, а перебором (можно было делать его и с единицы). При этом суть задачи в строгом доказательстве того, что среди чисел, больших 28, больше нет подходящих!

Предусматривал ли Пифагор все эти умные вещи, или мы их сами придумали? Скорее всего - предусматривал. Здесь вправду простой вариант задачки, для детей. Числа нарочно были подобраны так, чтобы получилось единственное решение без совмещения.

Слегка измененная задача: "половина изучает математику, четверть - природу, восьмая часть проводит время в размышлении, и, кроме того, есть еще восемь женщин" имеет три решения: 64, 32 и 16.

Как Вы думаете - решили мы эту задачу, или всего лишь изучили проблему (по-английски problem - задача)?
Математик ставит задачу; инженер ее решает; философ обдумывает - а та ли это вообще задача, которую следует решать. Кто же тогда литератор?

А есть еще и монахи, и разбойники.



Рассказ второй. Плоскатики



Там, где живут плоскатики, нет высоты. Простые плоскатики про нее даже не слышали. Самые простые плоскатики, если на них смотреть сверху или сбоку, похожи на кусочки линии. Если вы такому плоскатику посмотрите в лицо, увидите точку.

Чем плоскатик круглее, тем он важнее. Например, есть Треугольники, Квадраты, Многоугольники и даже Верховная Окружность.
Сбоку они все похожи! Поэтому плоскатики узнают общественное положение наощупь. Есть формула представления: "Разрешите представить Вам для ощупывания моего друга мистера N и просить Вашего согласия быть ощупанным им". Приличный плоскатик может определить число углов правильного многоугольника, ощупав всего только один его угол.

Однажды Сфера проходила плоскость насквозь, с одной стороны на другую. Она даже не заметила плоскость - ведь плоскость бесконечно тонкая. А плоскатики увидели недостойное поведение круглого Священника: сначала он раздувался, потом стал уменьшаться, а в конце превратился - о ужас - в Точку, и совсем исчез! (Представьте себе последовательные сечения сферы плоскостью).

Если плоскость жизни бесконечно большая и ровная, то можно идти вдаль по прямой бесконечно. Если на плоскости холмы, то заметить их трудно: ведь взгляд плоскатика изгибается вместе с поверхностью жизни. Но мы-то знаем, что поверхности могут быть кривыми и даже замкнутыми. Если плоскатики живут на поверхности сферы, то прямой путь приведет в точку старта, но с обратной стороны. При этом мы увидим, что плоскатик обошел вокруг сферы. (В модели Фридмана наш мир именно такой: летящий по прямой линии звездолет когда-нибудь вернется в точку старта. А пространство для полетов то сжимается в точку, то расширяется до максимального размера конечной Вселенной)

Самое время говорить о параллельных мирах. Представьте две параллельные плоскости. Плоскатики с разных плоскостей никогда не могут попадать друг к другу (хотя могут разводить досужие домыслы о жизни в параллельном мире) Напоминаем, что с одной плоскости другая не видна, взгляд не выходит из поверхности. Теперь представьте, что эти две плоскости выгнуты друг к другу и соприкасаются. Тогда настойчивый путешественник сможет отыскать проход и переползти на другую плоскость.

Можно представить еще много чего интересного. Например, на плоскости может торчать вырост вроде пузыря на ножке или родинки. При этом всей остальной плоскости до этого пузыря нет никакого дела, и издали никак не понять, есть он или нет. А если кто-то знает тайное место перехода, он сделает несколько шагов в нужном месте в нужную сторону (по ножке), и спрячется в пузыре. Такие сказки любил знаменитый исследователь джунглей Южной Америки П.Фосетт. Его сын обработал и издал дневники экспедиций - всех, кроме последней. Возможно, Фосетт верил легендам про могущественные тайные города в джунглях, про негаснущий свет в окнах башен на границах тайных территорий, да и сам он кое-что видел (или это ему почудилось). Последняя экспедиция бесследно исчезла.

В плоской Вселенной возможны быстрые межзвездные полеты.
Например, если лист жизни изогнут так, что точки на разных концах листа смыкаются - тогда можно найти путь короче, чем со стороны изгиба листа.

Плоскатиков придумал Эдвин Эбботт и написал про них в книге "Флатландия", изданной в 1880 году. Вот часть предисловия к книге Д. Бюргера "Сферландия" (Роттердам, 1957 г.):
"... автором романа о Флатландии, который приобрел международную известность, был англичанин Эдвин Э. Эбботт. Он был не математиком, а необычайно одаренным и квалифицированным педагогом. Мистер Эбботт родился 20 декабря 1838 г, а в 1865 г стал директором одной из лондонских школ. Помимо знаменитой "Флатландии", изделиями его пера были школьные учебники, несколько теологических работ, биография Бэкона и "Шекспировская грамматика", которая также приобрела большую известность. Умер Эдвин Э.Эбботт в 1926 г в возрасте 87 лет". На всякий случай проверяем эти цифры: 1926 - 1838 = 88 , а не 87. В чем тут дело, не знаю :)
Слово "плоскатики" сообщил мне физик Н.Казимиров в незапамятные времена. Может быть, он и придумал слово.

------------------------------------------------
Могут ли плоскатики сами, без нас, узнать, что их мир искривлен?
Вот обычный пример из научно-популярной литературы.
Представьте себе треугольник на сфере. Прямые на сфере – это меридианы (фрагменты наибольшей окружности). Видно, что в большом треугольнике, составленном из прямых, углы будут увеличены, и их сумма будет больше 180 градусов. Значит, если свет идет по линиям кратчайшего расстояния, и плоскатикам известна модель неискривленной плоскости, и они живут на сфере, то они смогут обнаружить кривизну поверхности без длительных путешествий. Такой опыт делали. В начале 20 века с помощью оптических приборов измеряли сумму углов треугольника, образованного тремя горными вершинами в Швейцарии. В пределах погрешности измерений сумма оказалась равной 180 градусам.

Учитывая опыт с простой задачкой (см. рассказ 1), теперь будем сомневаться... Были слова: прямая, расстояние. Какая еще прямая на поверхности?
Какой-то "свет" затесался в нашу тему и занял там неподобающе почетное место. Как это вышло?
Что такое расстояние? Вернее, в КАКОМ понимании (применении) расстояния нас интересует кривизна мира? Мы ходим по нашим полям и лесам, и хотим пешком попасть в одно другое место. Одни лесные тропы короче, другие длиннее. Как получается число, которым выражена длина пути? Нам нужно число шагов. Испробовав все тропы, мы найдем кратчайшую. А как уложить шаги? А МОЖНО ли уложить шаги? :)

За поворотом не видно, как идет тропа. На поле видно, куда идти. Если идти туда, куда видно, путь короче. 1) Это экспериментальный факт? это проверено? 2) Свет тоже пробует все варианты пути? 3) И как в нем укладываются шаги?

С прямыми линиями на поверхности математики более или менее разобрались. Они ввели понятие геодезической кривой - это кривая, которая, так сказать, везде идет по локально кратчайшему расстоянию.
(За это определение меня будут бить :). Расстояние (и геодезические кривые) можно вводить по-разному. Как понимают эти термины, когда говорят "свет распространяется по геодезическим линиям"?

А вдруг между вершинами нет пути шагами такой же длины, которую проходит луч света? Опыт с треугольником может показывать, что мир-то все равно крив, а вот свет идет по прямой вне мира пешеходных путешествий.
(Скорее всего, опыт этого не показывает).

Вопросов много. Но у нас и книжка есть! Давайте-ка почитаем сначала ее - интересно, что написал про эти таинственные предметы в 19 веке Эдвин Эбботт, автор "Шекспировской грамматики".

______________________
© Титов Александр Алексеевич

Продолжение следует

Белая ворона. Сонеты и октавы
Подборка из девяти сонетов. сочиненных автором с декабря 2022 по январь 2023 г.
Чичибабин (Полушин) Борис Алексеевич
Статья о знаменитом советском писателе, трудной его судьбе и особенностяхтворчества.
Интернет-издание года
© 2004 relga.ru. Все права защищены. Разработка и поддержка сайта: медиа-агентство design maximum